Stability of Finite Difference Schemes on Non-uniform Spatial-Time-Grids

نویسندگان

  • Piotr P. Matus
  • Vladimir I. Mazhukin
  • Igor E. Mozolevsky
چکیده

A bstract. The three level operator finite difference schemes on nonuniform on time grids in llilbert spaces of finite dimension are consid­ ered. A priori estimates for uniform stability on the initial conditions are received under natural assumptions on operators and non uniform time grids. The results obtained here are applied to study stability o f the three levels weighted schemes of second order approximation О (/i2 + r „ ) for some hyperbolic and parabolic equations of the second order. It is es­ sential to note that the schemes of raised order of approximation are constructed here on standard stencils which are used in finite difference approximation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids

We derive high-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. The schemes are fourth-order accurate in space and secondorder accurate in time for vanishing correlation. In our numerical study we obtain highorder numerical convergence also for non-zero correlation and non-smooth payoffs which are typical in option pricing. In all ...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

Moving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod

In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...

متن کامل

Optimal and near-optimal advection-diffusion finite-difference schemes. Part 2: Unsteadiness and non-uniform grid

∂tc+ λ c+ u ∂xc− κ ∂ xc = q + ∂xf + ∂ xg . At the grid points the extremely high order of approximation for the numerical solutions is such that if loss of accuracy is to be avoided then interpolation must use values extending beyond the local 3 by 2 computational module. Illustrative examples show that reasonable accuracy is possible with extremely long time steps on sparse non-uniform, moving...

متن کامل

Stable high-order finite-difference methods based on non-uniform grid point distributions

It is well known that high-order finite-difference methods may become unstable due to the presence of boundaries and the imposition of boundary conditions. For uniform grids, Gustafsson, Kreiss, and Sundstrom theory and the summation-by-parts method provide sufficient conditions for stability. For non-uniform grids, clustering of nodes close to the boundaries improves the stability of the resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000